
CS103 Handout 22
Spring 2015 May 18, 2015

Problem Set 7

This problem explores Turing machines, properties of the RE and R languages, and the limits of de-
cidability. This will be your first experience exploring the limits of computation, and I hope that you
find it exciting!

As always, please feel free to drop by office hours, ask questions on Piazza, or send us emails if you
have any questions. We'd be happy to help out.

This problem set has 34 possible points. It is weighted at 6% of your total grade.

Good luck, and have fun!

Due Wednesday, May 27th at the start of lecture

Problem One: Binary Sorting (3 Points)
Your task in this question is to design a TM that can sort a sequence of 0s and 1s into ascending or-
der. Specifically, your TM will be given as input a string of 0s and 1s surrounded by infinitely many
blanks and should sort them so that all 0s come before all 1s. Your TM should end by entering an
accepting state after rewriting the contents of the tape so that the 0s and 1s are sorted and the string
is surrounded by infinitely many blanks. The tape head can end anywhere on the tape.

For example, given this initial configuration:

… 1 1 0 0 0 0 1 1 0 …1 0 1 1 0

The TM should end in an accepting state with these tape contents:

… 0 0 0 0 0 0 0 1 1 …1 1 1 1 1

Please use our provided TM editor to design, develop, test, and submit your answer to this question.
(For reference, our solution has fewer than 10 states. If you have significantly more than this, you
might want to change your approach.)



Problem Two: The Collatz Conjecture (6 Points)
In last Friday's lecture, we discussed the  Collatz conjecture, which claims that the following procedure
(called the hailstone sequence) terminates for all positive natural numbers n:

• If n = 1, stop.
• If n is even, set n = n / 2.
• If n is odd, set n = 3n + 1.
• Repeat.

In lecture, we claimed that it was possible to build a TM for the language L = { 1n | the hailstone sequence
terminates for n } over the alphabet Σ = {1}. In this problem, you will do exactly that. The first two parts
to this question ask you to design key subroutines for the TM, and the final piece asks you to put every-
thing together to assemble the final machine.

i. Design a TM subroutine that, given a tape holding 12n surrounded by infinitely many blanks, ends
with 1n written on the tape, surrounded by infinitely many blanks. You can assume the tape head
begins reading the first 1, and your TM should end with the tape head reading the first 1 of the re-
sult. For example, given this initial configuration:

… 1 1 1 1 1 1 1 1 …

The TM would end with this configuration:

… 1 1 1 1 …

You can assume that there are an even number of 1s on the tape at startup and can have your TM
behave however you'd like if this isn't the case. Please use our provided TM editor to design, de-
velop, test, and submit your answer  to this question. (For reference, our solution has fewer than
10 states. If you have significantly more than this, you might want to change your approach.)

ii. Design a TM subroutine that, given a tape holding 1n surrounded by infinitely many blanks, ends
with 13n+1 written on the tape, surrounded by infinitely many blanks. You can assume that the tape
head begins reading the first 1, and your TM should end with the tape head reading the first 1 of
the result. For example, given this configuration:

… 1 1 1 …

The TM would end with this configuration:

… 1 1 1 1 1 1 1 1 1 …1

Please use our provided TM editor to design, develop, test, and submit your answer  to this ques-
tion. (For reference, our solution has fewer than 10 states. If you have significantly more than this,
you might want to change your approach.)



iii. Using your TMs from parts (i) and (ii) as subroutines, draw the state transition diagram for a Tur-
ing machine M that recognizes L. You do not need to copy your machines from part (i) and (ii)
into the resulting machine. Instead, you can introduce “phantom states” that stand for the entry or
exit states of those subroutines and then add transitions into or out of those states. (Check our TM
for checking whether a number is composite as a reference.) Please use our provided TM editor to
design, develop, test, and submit your answer  to this question.  (For reference, our solution has
fewer than 10 states. If you have significantly more than this, you might want to change your ap-
proach.)

Problem Three: What Does it Mean to Solve a Problem? (6 Points)
Let L be a language over Σ and M be a TM with input alphabet Σ. Below are three properties that may
hold for M:

1. M is a decider (that is, M halts on all inputs.)

2. For any string w ∈ Σ*, if M accepts w, then w ∈ L.

3. For any string w ∈ Σ*, if M rejects w, then w ∉ L.

At some level, for a TM to claim to solve a problem, it should have at least some of these properties. In-
terestingly, though, just having two of these properties doesn't say much.

i. Prove that if L is any language over Σ, then there is a TM M that satisfies properties (1) and (2)
with respect to L.

ii. Prove that if L is any language over Σ, then there is a TM M that satisfies properties (1) and (3)
with respect to L.

iii. Prove that if L is any language over Σ, then there is a TM M that satisfies properties (2) and (3)
with respect to L.

iv. Suppose that L is a language over Σ for which there is a TM M that satisfies properties (1), (2),
and (3). What can you say about L?

Problem Four: R and RE Languages (4 Points)
We have covered a lot of terminology and concepts in the past few days pertaining to Turing machines
and R and RE languages. These problems are designed to explore some of the nuances of how Turing
machines, languages, decidability, and recognizability all relate to one another. Please don't hesitate to ask
if you're having trouble answering these questions – we hope that by working through them, you'll get a
much better understanding of key computability concepts.

i. Give a high-level description of a TM M such that ℒ(M) ∈ R, but M is not a decider. This shows
that just because a TM's language is decidable, it's not necessarily the case that the TM itself must
be a decider.

ii. Only languages can be decidable or recognizable; there's no such thing as an “undecidable string”
or “unrecognizable string.” Prove that for every string w, there's an R language containing w and
an RE language containing w.



Problem Five: Password Checking (5 Points)
If you're an undergraduate here, you've probably noticed that the dorm staff have master keys they can
use to unlock any of the doors in the residences. That way, if you ever lock yourself out of your room,
you can, sheepishly, ask for help back in. (Not that I've ever done that or anything.)

Compare this to a password system. When you log onto a website with a password, you have the presump-
tion that your password is the only possible password that will log you in. There shouldn't be a “master
key” password that can unlock any account, since that would be a huge security vulnerability. But how
could you tell? If you had the source code to the password checking system, could you figure out whether
your password was the only password that would grant you access to the system?

Let's frame this question in terms of Turing machines. If we wanted to build a TM password checker,
“entering your password” would correspond to starting up the TM on some string, and “gaining access”
would mean that the TM accepts your string. Let p ∈ Σ* be your password. A TM that would work as a
valid password checker would be a TM M where ℒ(M) = {p}; the TM accepts your string, and it doesn't
accept anything else.

Given a TM, is there some way you could tell whether the TM was a valid password checker? Let p ∈ Σ*
be your password and consider the following language:

L = { ⟨M⟩ | M is a TM and ℒ(M) = {p} }

Your task in this problem is to prove that L is undecidable (that is, L ∉ R). This means that there's no al-
gorithm that can mechanically check whether a TM is suitable as a password checker.

i. Suppose there is a function

bool isPasswordChecker(string program)

that accepts as input a program and returns whether or not that program only accepts the string p.
Using the programs from lecture as a template, write the pseudocode for a self-referential pro-
gram that uses the isPasswordChecker method to obtain a contradiction. No justification is nec-
essary; you'll do that in the next step.

ii. Now, write a formal proof that L is not decidable. Use the proofs from lecture as a template – use
your pseudocode from above to write the high-level description of a self-referential Turing ma-
chine that uses a decider for L as a subroutine, then obtain a contradiction from that machine.



Problem Six: This Program is Not Responding (1 Point)
Most operating systems provide some functionality to detect programs that are looping infinitely. Typi-
cally, they display a dialog box containing a message like these shown below:

     

These messages give the user the option to terminate the program or to let the program keep running in
the hopes that it stops looping. An ideal OS would shut down any program that had gone into an infinite
loop, since these programs just waste system resources (processor time, battery power, etc.) that could be
better spent by other programs. It makes more sense for the OS to automatically detect programs that
have gone into an infinite loop.

Why does the operating system have to display a message like this? Briefly justify your answer.

Problem Seven: Self-Reference and RE (4 Points)
In lecture, we saw that ATM is undecidable, but is recognizable. From a programming perspective, this
means that it's possible to write a method

bool willAccept(string program, string input)

that accepts as input a program and an input. The method then has the following guarantees:

• If the program accepts the input, this method must return true.

• If the program does not accept the input, this method may return false, or it may go into an infi-
nite loop and never return.

Now, consider the following program:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Prove that this program must loop infinitely on all inputs. (Hint: proceed by contradiction.)



Problem Eight: Closure Properties of R (5 Points)
This question explores various closure properties of  R. Because  R corresponds to decidable problems,
languages in R are precisely the languages for which you can write a method

bool inL(string w)

such that 

• for any string w ∈ L, calling inL(w) returns true.

• for any string w ∉ L, calling inL(w) returns false.

This means that  we can reason about closure properties of the decidable languages by writing actual
pieces of code.

i. Let L₁ and L₂ be decidable languages over the same alphabet Σ. Prove that L₁ ∪ L₂ is also decid-
able. To do so, suppose that you have methods  inL1 and  inL2 matching the above conditions,
then show how to write a method inL1uL2 with the appropriate properties. Then, write a short
proof explaining why your method has the required properties.

ii. Using a proof along the lines of part (i) of this problem, prove that R is closed under concatena-
tion.

iii. Prove that R is closed under symmetric difference. This might seem like a weird thing to prove,
but you'll need this result on the final problem set.

Extra Credit Problem: Quine Relays (1 Point Extra Credit)
In either C, C++, or Java, write four different programs with the following properties:

• Running the first program prints the second program.

• Running the second program prints the third program.

• Running the third program prints the fourth program.

• Running the fourth program prints the first program.

• None of the programs perform any kind of file reading.

In other words, we'd like a collection of four different programs, each of which prints the next one in the
sequence,  wrapping  back  around at  the  end.  Please  submit  your  programs by emailing  the  staff list
(cs103-spr1415-staff@lists.stanford.edu) with the subject “PS7 EC” and attaching your source files as a
.zip archive. (We ask that you submit this way because we need to be able to independently verify that
your programs work as expected.)
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